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Abstract

The Manapany day gecko, Phelsuma inexpectata, is a critically endangered rep-

tile endemic to Reunion Island (Southwestern Indian Ocean region). In the present
study, we provide the first in-depth insights into the genetic diversity and population
structure of the species across its main geographic range, limited to a narrow 14—km
littoral fringe in the south of the island. We used two mitochondrial genes and twenty
microsatellite loci to genotype 452 geckos sampled in anthropized and natural sites.
Compared to other insular species of the Phelsuma genus, P. inexpectata displays

a low genetic diversity with nine mitochondrial haplotypes detected, and based on
the nuclear markers, a mean number of alleles (N,) of 2.8+0.3, and an observed
(H,) and expected heterozygosity (H,) reaching a maximum of 0.353+0.053 and
0.345+0.046 per site, respectively. For most sites, no significant deviations from
Hardy—Weinberg equilibrium were detected. Along the limited distribution of P. inex-
pectata, isolation-by-distance patterns and geographical population structures were
found with low first-generation migrants between sites. Genetic diversity distribution
and structure are likely shaped by historical processes, including the fragmentation
and isolation of relict populations, and anthropogenic-mediated colonization of novel
habitats. The fine-scale population differentiation and genetic structuring, combined
with the limited dispersal capacity of P. inexpectata, highlight the vulnerability of local
gecko populations to extinction in the face of habitat fragmentation and loss. The low
genetic diversity of P. inexpectata could limit its evolutionary potential and make it
vulnerable to stochastic changes in its environment. Hence, efforts to conserve the
genetic diversity should be strengthened, notably in natural sites harboring an original
and remarkable genetic diversity.
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Introduction

Reptiles represent a large part of vertebrate biodiversity with currently more

than 12,440 living species (1,260 genera and 94 families) making them the most
diverse group of amniotic vertebrates [1]. Currently, reptiles are one of the most
endangered vertebrate groups, with one in five species facing the threat of extinc-
tion [2,3]. The main threats include agriculture, logging, urban development, and
invasive alien species [3,4]. In addition, based on data collected from 1970-2012,
a global decline in reptile populations of 54—55% has been estimated [5], with
significant declines predicted in the future due to climate change [6]. In this con-
text, measures should be taken to protect reptiles, but there is a lack of data on
their conservation status [7]. More knowledge should be acquired on species,
including genetic and genomic data whose importance for the conservation and
management of reptiles has been demonstrated in various studies [8], especially
on threatened species such as tortoises [9-11], snakes [12], crocodiles [13,14],
and lizards [15-20].

The Manapany day gecko, Phelsuma inexpectata, is an endemic reptile to
Reunion Island, a French territory located 700 km east of Madagascar in the
Southwestern Indian Ocean region (Fig 1). Classified as Critically Endangered
on the IUCN Red List of Threatened Species, the species is threatened by hab-
itat fragmentation and loss, anthropogenic activities, and invasive alien species
[21]. Over the last decade, the abundance and area occupied by P. inexpectata
in natural sites have declined [22,23]. Today, the remaining populations are
restricted to a narrow 14—km littoral fringe in the south of the island (Fig 1A),
and the total distribution area of the species, estimated at 24 ha, is small and
highly fragmented [21,23]. In the context of habitat fragmentation and loss, the
natural low dispersal capacity of P. inexpectata, estimated at a maximum disper-
sal distance of 100 m [24], could limit gene flow between isolated populations
and increase the risk of local extinction. To conserve P. inexpectata, measures
have been implemented and efforts have been made to acquire knowledge about
the species [23,25-30]. Regarding the genetic knowledge of P. inexpectata,
most available studies have addressed its phylogenetic relationships among
the Phelsuma genus [31-34], and to date, the genetic diversity and population
structure of P. inexpectata remain unstudied. Hence, in this study, we aimed to
investigate the genetic diversity of P. inexpectata using two mitochondrial and
twenty nuclear markers [35] and based on an extensive sampling across most of
its distribution encompassing both natural and human-modified habitats (Fig 1B).
In addition, we examined the population differentiation and structure, the pres-
ence of isolation-by-distance (IBD) patterns, gene flow through first-generation
migrant analyses, and the potential occurrence of recent genetic bottlenecks.
Given the extent of habitat fragmentation and loss along with the species’ limited
dispersal capacity, a genetic structuring among sites is expected. Altogether, the
generated data enhance our knowledge of P. inexpectata and, in addition to sup-
porting ongoing management efforts, provide important guidance for the conser-
vation of this threatened species.
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Fig 1. Location of study sites of Phelsuma inexpectata. (A) Location of Reunion Island in the Southwestern Indian Ocean region. (B) Location of the
ten anthropized (“A”) and eight natural (“N”) sites. The pie charts show the distribution of the mitochondrial haplotypes at each site. The chart is colored
according to the mitochondrial haplotypes detected and the size is proportional to the number of samples sequenced (N, =448). (C) Mitochondrial
haplotype network based on the concatenated sequences of cytb and 712S partial genes (1,190 bp). Each of the nine discovered haplotypes (H1 to H9)
are indicated by one color. A dot on the link between haplotypes corresponds to one mutation. (D) STRUCTURE graphs with K=3 and K=12 genetic
clusters based on the genotyping of 452 P. inexpectata at twenty microsatellite markers. Each color corresponds to one genetic cluster. Each specimen
is represented by a single bar and colored according to the nuclear genetic cluster. (E) Photograph of an adult male Phelsuma inexpectata (picture:
UMR PVBMT — Reunion University). Maps from (A) were realized by using the “worldHires” database from mapdata package [36] under the R program
v4.2.1 [37]. On (B), the coastlines are schematically represented for conservation purposes to protect spatial information associated with the species.

K=12

https://doi.org/10.1371/journal.pone.0338217.9001

Materials and methods
Ethic statement

The research was conducted with the permission delivered by the prefecture of Reunion Island (no DEAL/SEB/
UBIO/2020-19). Captures, manipulations, and tissue sampling were approved by the Ethics Committee of Reunion Island
for animal experiments (APAFIS #29467_2021012816034183_v2).

Field sampling

Tissue samples were collected between March and September 2021 from 18 sites across the known geographical dis-
tribution of P. inexpectata along a narrow 14—km littoral fringe in the south of the island (Fig 1 and S1 Table). These sites
represent the largest known areas containing the species and, along the coast, the sampling is nearly exhaustive [23].
Distances between neighboring sites ranged from 0.2 to 3.2 km, and the maximum distance between a pair of sites

was 14.3 km. Each sampling area was considered as a specific site based on the presence of physical barriers (e.g.,
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unfavorable habitats or roads) preventing potential natural dispersal of geckos coupled with the low dispersal capacity of
P. inexpectata, estimated at a maximum of 100 m [24]. For each site, the type of habitat was defined as “natural” (sites
characterized by the presence of remnant patches of pristine native vegetation for example: screwpine (Pandanus utilis)
and Mauritius hemp (Furcraea foetida)) or “anthropized” (environments strongly modified by human activities, such as
private gardens, urban parks or agricultural landscapes). Geckos were captured by hand or with small mammal traps
[38]. Additionally, specimens originating at sites S6 and S7 from a captive head-starting program conducted by the local
NGO Nature Océan Indien [39], were also sampled and included in the study. The sex of each specimen was determined
based on morphological clues [40]. On the tail, at a point of autotomy, a small tip (< 1 cm) was collected using surgical
scissors that were cleaned between cuts. Geckos were then released at the exact location where they had been captured.
All collected tissues were preserved in 95% ethanol and stored at —20°C until DNA extraction. A subset of the collected
samples (from sites S4 and S9) were previously used for the development and characterization of microsatellite markers
for P. inexpectata [35].

DNA extraction, mitochondrial marker sequencing and analyses

Total DNA was extracted from each sample using the NucleoSpin Tissue Kit (Macherey-Nagel). All samples were
sequenced at two partial mitochondrial genes: cytochrome B (cytb) and 12s rRNA (referred to herein as 12S) already
used for other gecko species in the region [16,31,33,34]. The primers used were CBL14753 (5-TTC AAC TAC AAAAAC
CTAATG ACC C-3’) [31] and CBH15579 (5’-TGG GAT TGA TCG TAG GAT GGC GTA-3’) [41] for cytb, and 12Sa (5'-
AAA CTG GGATTA GAT ACC CCACTAT-3’) and 12Sb (5-GAG GGT GAC GGG CGG TGT GT-3') [42] for 12S. The
amplification conditions were adapted from Harris et al. [43] and Rocha et al. [33]. All PCRs were performed in a 10 uL
final reaction containing 1 U of Tag DNA polymerase, 0.24 mM of dNTPs, 10 pmol of each primer, 1X PCR Buffer, and
10 ng of DNA. The volume of MgCl, in the PCR mix was 2.0 and 1.5 mM for cytb and 72S, respectively. For cytb, PCR
conditions consisted of an initial denaturation step at 94°C for 5 min, followed by 35 cycles of 94°C for 30 sec, 46°C for
40 sec, and 72°C for 45 sec, and a final elongation step at 72°C for 5 min. For 712S, PCR conditions were an initial dena-
turation step at 94°C for 5 min, followed by 30 cycles of 93°C for 30 sec, 55°C for 1 min, and 72°C for 1 min, and a final
elongation step at 72°C for 10 min. All PCR products were Sanger sequenced on both forward and reverse strands with
the same primers used for amplifications. Each mitochondrial sequence was visually inspected and edited using Gene-
ious Prime v2021.2.2 [44].

For each sampling site, for the concatenated mitochondrial genes (cytb and 12S), the number of haplotypes (H) was
determined, and the haplotype diversity (hd) and nucleotide diversity (1) were calculated using DnaSP v6.12.03 [45].
A haplotype network was constructed based on the concatenated mitochondrial genes using the pegas package [46]
under the R program v4.2.1 [37]. A Wilcoxon rank test was used to examine the difference in hd between natural and
anthropized sites.

Microsatellite genotyping and analyses

Nuclear genotyping of the samples was performed using the twenty microsatellite markers developed for P. inexpectata
and the associated protocols [35]. All PCR products were visualized on an ABI 3730XL DNA Analyzer using the GeneScan
500LIZ size standard (Applied Biosystems) and alleles were scored using Geneious Prime v2021.2.2 [44]. According to
the microsatellite markers, 15-87 geckos were re-genotyped for verification or to remove any doubt in the scoring.

The software MICRO-CHECKER v2.2.3 [47] was used to test the presence of null alleles, large allele dropouts, and
potential genotyping errors in each sampling site (10,000 randomizations). The GENEPOP v4.7.5 [48] was used to evalu-
ate the linkage disequilibrium (LD) between all locus pairs for each of the 18 sites and the whole dataset (i.e., considering
all sites as one unique site). For each locus, deviation from Hardy—Weinberg equilibrium (HWE) was tested in GENEPOP
v4.7.5 with the Fisher’s exact test (10,000 dememorizations, 300 batches, and 5,000 iterations per batch). For both LD
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and HWE tests, the correction of Benjamini and Yekutieli [49,50] was applied for multiple comparisons. For each site, the
genetic diversity was accessed by calculating the mean number of alleles (N,), the number of private alleles (P,, number
of alleles detected only in a specific site), the observed heterozygosity (H,), and the expected heterozygosity (H,) using
GenAlEx v6.51b2 [51,52]. Furthermore, deviation from HWE was tested in GENEPOP and the fixation index (F,) was esti-
mated in GENETIX v4.05.2 [53] using 1,000 bootstraps. Difference in nuclear genetic diversity between the type of sites
(natural vs. anthropized) were tested with Wilcoxon rank tests on H, H_, and N...

Population genetic differentiation

Genetic differentiation between all sites was evaluated by pairwise multilocus F; indices in the GENODIVE software [54],
with 9,999 permutations and a Benjamini and Yekutieli correction. To visualize the genetic relationships between sites,

a UPGMA (Unweighted Pair Group Method with Arithmetic Mean) hierarchical clustering method was applied to the F;
matrix. The analysis was conducted assuming a constant molecular clock in the R software using the R package ape [55].

Isolation by distance

The presence of isolation-by-distance (IBD) pattern was analyzed through the relation between genetic distance matrix (F/
(1- Fg,)) against a geographic distance matrix between sites (km). Statistical significance was assessed by performing a
Mantel test in GenAlEx using 9,999 permutations. The site S1, located at the extreme western end of the study area (Fig
1B), encompasses geckos which were considered as presumably recently introduced (Sanchez M., pers. comm.). There-
fore, the IBD analysis was conducted excluding site S1 to avoid potential artifacts. IBD analyses were also performed on
separate datasets containing anthropized (N_,__=9) and natural sites (N_,__=8) only.

sites sites

Population clusters and structuration

The Bayesian clustering algorithm implemented in the software STRUCTURE v2.3.4 [56] was used to determine the num-
ber of genetic clusters based on the generated microsatellite data. The analysis consisted of 10 runs of 1,000,000 Markov
Chain Monte Carlo (MCMC) iterations after 100,000 burn-in steps with K (number of genetic clusters) ranging from 1 to
20. The admixture model with correlated allele frequencies was used for the analyses without location prior (LOCPRIOR).
Subsequently, the optimal K was determined using two methods, Evanno’s AK [57] and the mean log likelihood value of

K (LnP(K)) implemented in the STRUCTURE HARVESTER online software [58]. The online CLUMPAK software [59] was
used to examine the different runs and visualize the plots. In addition, a discriminant analysis of principal components
(DAPC) was used as an alternative inference of the genetic structure of populations [60]. This analysis was performed
using the R package adegenet [61] with Bayesian Information Criterion (BIC).

Detection of first migrants

GENECLASS? [62] was used to detect first-generation migrants between all investigated sites. We hypothesize that not
all gecko sites were sampled and therefore used the L_home likelihood ratio [62,63]. The Bayesian method of Rannala
and Mountain [64] was used. The Monte-Carlo resampling algorithm of Paetkau et al. [63] was used with 1,000 simulated
individuals and a threshold probability of 0.01.

Detection of bottlenecks

Recent reductions in effective population sizes were tested with BOTTLENECK v1.2.02 [65] using the Two-Phase Muta-

tion Model with two multiple step mutation rates: a general vertebrate rate (pg=0.22) [66] and a reptile rate (pg=0.46) [67]
as described in Buckland et al. [16]. The analyses were performed with 10,000 iterations, and statistical significance was
assessed based on the results from one-tailed Wilcoxon signed-rank tests.
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Results
Samples

A total of 452 individuals (198 females, 249 males, and 5 unsexed) were sampled from 18 sites: ten anthropized sites (S1,
S2, S5, S9, S10, S13, S14, S15, S16, and S18) and eight natural sites (S3, S4, S6, S7, S8, S11, S12, and S17) (Fig 1B
and S1 Table). The number of samples analyzed per site ranged from 11 to 71 (mean number of samples per site: 25.1).

Mitochondrial genetic diversity

Amplification of mitochondrial cytb and 128 partial genes yielded sequences with good quality for 448 out of the 452
samples. No deletions or insertions were detected after sequence cleaning. Sequence sizes were 804 bp and 386 bp for
cytb and 128, respectively. A total of seven and three haplotypes were detected for the cytb and 12S genes, respectively.
Associated unique haplotypes were deposited in GenBank under the following accession numbers: OR126328-OR126334
and OR138116-OR138118 for cytb and 128, respectively. Concatenation of cytb and 12S sequences resulted in nine
unique haplotypes of 1,190 bp: H1 to H9 (Fig 1C and Table 1). The number of haplotypes per site ranged from one to five,
and seven sites had only one haplotype. Across the whole dataset, H1 was the most common haplotype (67.2%) followed
by H2 (10.3%), H3 (8.3%), H4 (6.3%), H5 (3.8%), H6 (1.8%), H7 (1.3%), H8 (0.7%), and H9 (0.4%). H1 was detected from
the western to the eastern part of the distribution, in 15 out of the 18 sampled sites, and was the only present haplotype in
five sites. H5 was also widespread, from the center to the eastern part of the distribution, and was detected in half of the
anthropized sites (Fig 1B). Except for H1, H5, and H7, which were detected in distant sites, the distribution of the other
haplotypes was geographically structured. H2 was only detected in three geographically close sites (i.e., S3, S4, and S5),

Table 1. Genetic diversity at two mitochondrial and 20 microsatellite markers of Phelsuma inexpectata sampled at 18 sites on Reunion Island.

Mitochondrial data (concatenated cytb and 12s) | Microsatellite data
Site |Habitat N |H hd L N [N, H, H, P. | FIS [95% CI]
S1 |A 11 |1 (H1) 0.000 | 0.000 11 1.7 (£ 0.2) 0.266 (+ 0.064) 0.242 (£ 0.054) |— |- 0.0522 [- 0.3277; 0.0755]
S2 |A 23 |1 (H1) 0.000 | 0.000 23 | 1.7 (£ 0.2) |0.207 (+ 0.053) | 0.195 (+ 0.049) |— |- 0.0835 [- 0.2940; 0.0712]
S3 |N 30 |1 (H2) 0.000 | 0.000 32 |2.3(x0.2) 0.286 (+0.054) | 0.297 (+ 0.053) | — |0.0494 [- 0.0732; 0.1327]
S4 |N 30 |2 (H1, H2) 0.186 | <0.001 |30 [2.3(+0.2) |0.353 (+0.053) |0.345 (+ 0.046) — |0.0024 [- 0.1123; 0.0809]
S5 (A 15 |2 (H1, H2) 0.248 | <0.001 |15 2.0(x0.2) | 0.279 (£ 0.061) | 0.261 (+ 0.048) — | - 0.0461 [- 0.2036; 0.0044]
S6 |N 13 |2 (H1, H4) 0.539 | 0.001 13 |2.1(x0.2) 1 0.270 (+ 0.049) | 0.274 (£ 0.048) |— |0.0560 [- 0.1381; 0.1945]
S7 | N 19 | 2 (H4, H6) 0.456 | <0.001 |19 |2.3(+0.2) | 0.276 (+0.048) | 0.271 (+ 0.048) 2 |0.0348 [- 0.0940; 0.0892]
S8 |N 17 |5 (H1, H4, H6, H8*, H9*) | 0.750 | 0.002 17 |2.5(x0.2) 1 0.340 (+ 0.044) 0.319 (£ 0.041) |1 |-0.0393 [- 0.1828; 0.0314]
S9 |A 70 |3 (H1, H5, H7) 0.323 | <0.001 |71 |2.8(+0.3) |0.345 (+ 0.051) |0.338 (£ 0.048) |1 |-0.0122 [- 0.0754; 0.0359]
S10 (A 29 |2 (H1, H5) 0.246 | <0.001 |29 |2.4(+0.2) |0.253 (+ 0.050) | 0.247 (£ 0.049) 1 |0.0043 [- 0.1005; 0.0693]
S11 |N 30 |1 (H3) 0.000 | 0.000 30 2.4 (x0.2) 0.324 (£ 0.052) | 0.319 (+ 0.048) — |0.0205 [- 0.0980; 0.0899]
S12 |N 29 |2 (H1,H3) 0.379 | <0.001 |30 |2.4(+0.2) |0.270 (+ 0.045) | 0.302 (* 0.050) 0.1463 [0.0190; 0.2243]
S13 (A 30 |1 (H1) 0.000 | 0.000 30 |2.0(£0.2) 0.245(+0.051) | 0.249 (+ 0.047) — |0.0378 [- 0.0935; 0.1275]
S14 |A 12 |3 (H1, H5, H7) 0.439 | 0.001 12 |2.1(x0.2)  0.238 (+ 0.054) | 0.252 (+ 0.050) |— |0.0710 [- 0.2053; 0.1925]
S15 (A 15 |1 (H1) 0.000 | 0.000 15 1.8 (x0.2) 0.274 (+ 0.062) | 0.237 (+ 0.052) - 0.1084 [- 0.2923; 0.0088]
S16 |A 20 |2 (H1, H5) 0.200 | <0.001 |20 |2.2(+0.2) |0.253 (+ 0.045) | 0.271 (£ 0.043) — |0.0897 [- 0.0495; 0.1659]
S17 |N 30 |1 (H1) 0.000 | 0.000 30 [1.9(x0.2) 0.258 (£ 0.051) | 0.252 (+ 0.051) — |0.0154 [-0.1277; 0.1175]
S18 |A 25 |2 (H1, H5) 0.080 | <0.001 |25 |2.2(+0.2) |0.226 (+ 0.044) | 0.239 (+ 0.048) — |0.1000 [- 0.0602; 0.2023]

For each site, the type of habitat is indicated, A: anthropized; N: natural; N the number of genotyped specimens; H the number of haplotypes (H1-H9:
haplotype designation, an asterisk indicates a private haplotype); hd haplotype diversity; 1t nucleotide diversity; N, the mean number of alleles; H, the
observed heterozygosity; H, the expected heterozygosity; P, the number of private alleles; F g the fixation index [95% confidence intervall.

https://doi.org/10.1371/journal.pone.0338217.t001
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being the most abundant haplotype in two out of the three sites. H4 was detected only in the three geographically close
natural sites S6, S7, and S8, while H6 was found only at sites S7 and S8. Similarly, H3 was detected only in the two geo-
graphically close natural sites S11 and S12. The only two private haplotypes (H8 and H9) were found in the same natural
site S8. Overall, the most common haplotypes (H1 and H2) were found at both natural and anthropized sites. Only two
unique haplotypes (H5 and H7) were found exclusively in anthropized sites, while five haplotypes (H3, H4, H6, H8, and
H9) were unique to natural sites. Interestingly, the entire mitochondrial haplotype diversity was found along a geographical
distribution within a distance of less than 5 km from sites S5 to S13. For all sites, nucleotide diversity (1t) was low (0.000 to
0.002). Haplotype diversity (hd) ranged from 0.000 to 0.750 and 0.000 to 0.439 for natural and anthropized sites, respec-
tively (Table 1). The haplotype diversity appeared to be twice as high in natural sites (mean hd=0.289+0.286) than in
anthropized sites (mean hd=0.154+0.160) but this difference is not significant (Wilcoxon rank-sum test, p-value =0.385).

Nuclear genetic diversity

Nuclear genotypes were obtained for all 452 sampled geckos with 60% to 100% of amplified loci per specimen. For

each microsatellite marker, the amplification rates ranged from 85.6% (Pinex_22) to 99.8% (Pinex_06 and Pinex_15)

(S2 Table). Based on the whole dataset, all loci were polymorphic with at least two alleles detected per locus. These
results are consistent with previous findings obtained at two sampling sites (i.e., S4 and S9) during the development of
the nuclear markers [35]. A total of 75 distinct alleles were detected across all considered loci. For each locus, the total
number of alleles Na, , the observed H_ heterozygosity, and the expected H, heterozygosity were low and ranged from 2
to 7, 0.023 to 0.517, and 0.022 to 0.520, respectively (S2 Table). All loci were in HWE. When all nuclear data are com-
piled as one unique site, LD was detected for three locus pairs (Pinex_72 and Pinex_44, Pinex_72 and Pinex_52, and
Pinex_72 and Pinex_87) (all p-values<0.001). However, analyses within each of the 18 sites separately revealed the
presence of LD at site S3 only and for one locus pair: Pinex_07 and Pinex_34 (p-value <0.05). Null alleles were detected
for five microsatellite markers: Pinex_22 at site S4, Pinex_44 at site S13, Pinex_46 at sites S12 and S18, Pinex_61 at site
S3, and Pinex_62 at site S6 (S2 Table). Given the detection of LD and null alleles in a limited number of sites, all loci were
retained for subsequent analyses.

The mean number of alleles (N,) was low and ranged from 1.7+0.2 to 2.8 £0.3 between the 18 sampled sites (Table 1).
No significant difference was detected for N_ between the two types of sites with mean values of 2.3+0.2 and 2.1+0.3 for
natural and anthropized sites, respectively (Wilcoxon rank- sum test, p-value=0.108). Private alleles (P,) were detected
in natural sites with two private alleles in site S7, and one private allele in sites S8 and S12. Private alleles were also
detected in anthropized sites with one private allele found in each of the three following sites: S9, S10, and S15 (Table
1). The H_ and H_ ranged from 0.207 £0.053 to 0.353+0.053 and from 0.195+0.049 to 0.345+0.046, respectively. Nat-
ural sites had significantly higher mean values of H (0.297+0.037) and H, (0.297 £0.031) than anthropized sites (mean
H =0.259+0.037 and mean H_ =0.253+0.036) (Wilcoxon rank-sum tests, all p-values <0.05). For all sites, no significant
deviation from HWE was detected based on analyses done in GENEPOP. This is consistent with F ¢ values obtained from
GENETIX except for the site $12, at which a deficit is observed with an F ¢ of 0.1463 and significantly different from zero
(Cl=[0.0190; 0.2243]).

Population genetic differentiation and isolation by distance

All pairwise F ¢, comparisons among sites were significant (all p-values <0.05), with values ranging from 0.033 to 0.454
(Table 2). Overall, geographically close sites displayed low to moderate F, values (from 0.033 to 0.125), for instance,
S3, S4, and S5; S6, S7, S8, and S9; or S11 and S12, with distances between sites ranging from 0.2 to 1.6 km (Table 2).
In contrast, geographically distant sites had high F, values, such as sites S2 and S15, which are more than 8 km apart
and display the highest F, value (0.454). Compared to all other sites, sites S2, S15, and S17 appeared the most dif-
ferentiated, with all values of pairwise F, higher than or equal to 0.185 (Table 2). The UPGMA tree supported that sites
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Table 2. Values of pairwise F, (lower diagonal) and distance in km (upper diagonal) between the 18 sampled sites for Phelsuma inexpectata
on Reunion Island.

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S$12 S13 S14 | S15 S$16 S$17 S18
S1 |- 3.3 6.0 6.2 6.4 7.4 7.6 8.0 8.9 9.2 9.6 10.1 1.2 11.5 1.8 121 13.0 |14.3
S2 |0.395 |- 2.7 2.9 3.1 4.2 4.3 4.8 5.6 5.9 6.3 6.9 7.9 8.2 8.6 8.9 9.7 1.1
S3 0.221 | 0.195 | — 0.2 0.4 1.5 1.6 2.1 3.0 3.2 3.6 4.2 5.2 5.6 6.0 6.2 7.1 8.5
S4 |0.208 | 0.255 |0.076 |— 0.3 1.2 1.4 1.9 2.8 3.0 3.4 4.0 5.0 5.3 5.7 6.0 6.8 8.3
S5 0.233 | 0.365 | 0.125 | 0.065 |— 1.1 1.2 1.7 2.6 2.8 3.2 3.8 4.8 5.2 5.5 5.8 6.7 8.1
S6 |0.189 | 0.371 | 0.182 | 0.120 | 0.178 |- 0.2 0.8 1.6 1.8 2.2 2.7 3.7 4.1 4.5 4.8 5.6 71
S7 /0.192 |0.348 | 0.167 |0.140 |0.191 | 0.057 |— 0.6 1.5 1.6 2.0 2.6 3.2 4.0 4.4 4.6 5.5 6.9
S8 |0.110 |0.306 | 0.119 |0.081 |0.094 | 0.046 | 0.050 — 0.9 1.1 1.5 2.1 3.2 3.5 3.8 4.1 5.0 6.4
S9 |0.080 |0.268 |0.152 | 0.132 | 0.119 |0.113 |0.113 |0.033 |— 0.4 0.8 1.3 2.4 2.6 3.0 3.2 4.1 5.5
S$10 |0.048 |0.378 |0.205 | 0.220 |0.230 | 0.208 |0.192 | 0.103 | 0.123 | — 0.4 1.0 2.1 2.3 2.7 3.0 3.8 5.3
S$11 /0.110 | 0.290 | 0.135 | 0.105 | 0.137 |0.075 | 0.113 |0.033 |0.080 § 0.122 | — 0.6 1.7 2.0 2.4 2.6 3.5 4.9
S12 | 0.105 | 0.314 | 0.143 | 0.120 | 0.163 | 0.083 |0.128 | 0.037 |0.079 | 0.129 | 0.064 — 1.1 1.4 1.9 2.0 2.1 4.4
S13 |0.243 | 0.349 |0.247 |0.202 | 0.317 |0.227 | 0.245 0.166 |0.177 0.272 | 0.192 |0.145 | — 0.7 1.1 1.3 2.0 3.6
S14 | 0.185 | 0.407 | 0.222 | 0.178 |0.247 | 0.168 | 0.223 | 0.134 | 0.155 | 0.230 | 0.119 | 0.147 | 0.141 | — 0.6 0.6 1.5 3.0
$15 |0.293 | 0.454 |0.285 |0.215 | 0.315 |0.278 | 0.270 |0.190 |0.185 | 0.306 | 0.213 | 0.208 | 0.276 | 0.259 | — 0.5 1.2 2.6
S$16 |0.062 | 0.393 |0.203 | 0.202 | 0.236 |0.178 |0.190 |0.101 |0.130 | 0.064 | 0.138 | 0.096 | 0.254 | 0.180 |0.282 | — 0.9 2.4
S$17 /0.330 | 0.370 | 0.247 | 0.260 |0.340 | 0.276 |0.309 | 0.222 | 0.236 | 0.323 | 0.188 | 0.210 | 0.225 | 0.216 | 0.369 |0.312 |- 1.6
S18 |0.265 | 0.364 | 0.176 | 0.149 |0.253 | 0.166 |0.187 0.131 | 0.172 0.268 0.114 |0.172 | 0.179 | 0.060 |0.274 |0.229 |0.224 |-

All comparisons remained significantly different after the Benjamini and Yekutieli correction.

https://doi.org/10.1371/journal.pone.0338217.t002

generally clustered according to their geographic origins but also revealed that some geographically distant sites grouped
together, exhibiting low genetic divergences as for instance the anthropized sites S1, S10, and S$16 or S14 and S18 (F,
values <£0.064 and distances between sites ranging from 3.0 to 12.1 km) (S1 Fig and Table 2).

In addition to genetic differentiation between sites, a significant IBD pattern was detected across all 17 sites (excluding
the presumably recently introduced site S1) (R?=0.314, p-value <0.001) (Fig 2). This pattern remained significant when
only natural (8 sites: R2=0.625, p-value=0.002) (S2A Fig) or anthropized sites (9 sites, excluding the site S1: R?=0.402,
p-value=0.012) (S2B Fig) were considered.

Population clusters and structuration

The results from STRUCTURE for K=1-20 showed that the data are best explained by K=3 based on AK (Fig 1D and S3A
Fig). Afirst genetic cluster (colored in orange in Fig 1D, for K=3) comprised four sites: S2 to S5; a second cluster (in blue)
comprised ten sites: S1, S6 to S12, S15, and S16; and a third cluster (in purple) comprised four sites: S13, S14, S17, and
S18. Globally, this population genetic structure appears to match to a geographical distribution from the west to the east of
the study area. However, in some parts this geographical distribution is not perfect, with for instance most individuals from
the western site S1 and the eastern sites S15 and S16 being assigned to the central blue cluster. According to the LnP(K)
method, the data can also be explained by K=12 (Fig 1D and S3B Fig) with some sites forming specific and unique genetic
subclusters (see Fig 1D for K=12). This latter result confirmed that sites S1, S10, and S16 belong to the same genetic
cluster, and similar findings were also observed for sites S14 and S18 (Fig 1D). The presence of such genetic subclustering
pattern is consistent with the fine-scale genetic differentiation pattern between sites (Table 2 and S1 Fig). Results from the
DAPC analyses showed similar global patterns, with the three main genetic clusters clearly discriminated (Fig 3). Note that
the BIC criterion indicated that the nuclear data were best explained by 15 clusters when all sites were considered (Fig 3A),
and by 11 clusters when the most differentiated sites (S2, S15, and S17) were removed from the analyses (Fig 3B).
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Fig 2. Isolation by distance of Phelsuma inexpectata using nuclear markers. The genetic distance (F,/ (1- F,)) is plotted against the spatial distance
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(in km) and is based on the genotyping of 441 specimens at 20 microsatellite markers across 17 sites (excluding site S1) in the south of Reunion Island.
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Detection of first migrants

Among the 452 individuals, only twelve specimens (2.7%) sampled from 11 sites were considered as first-generation
migrants (S3 Table). For eight out of the twelve first-generation migrants, origin sites were geographically close to the
sampled sites with distances ranging from 0.2 to 0.6 km. In contrast, origins of the remaining four first-generation migrants
were distant from the sampled sites with distances ranging from 1.3 to 9.2 km (S3 Table).

Detection of bottlenecks

Using the general vertebrate mutation rate, evidence of recent bottlenecks was detected at three sites: S1, S4, and S17.
When considering the reptile mutation rate, signs of recent bottlenecks were detected at six sites: S1, S2, S4, S11, S15,
and S17 (S4 Table).

Discussion

In this study, using two mitochondrial and twenty microsatellite loci on 452 geckos sampled across ten anthropized and
eight natural sites, we provide the first survey on the genetic diversity and population structure of the Critically Endan-
gered P. inexpectata. This species harbors a relatively low genetic diversity compared to other insular members of the
Phelsuma genus [16,20,68], and shows genetic structuring across its restricted distribution range (i.e., 14 km long) in the
south of Reunion Island.

Low genetic diversity in Phelsuma inexpectata

Within the Phelsuma genus, native to the Southwestern Indian Ocean islands [31,34], comparable mitochondrial and
nuclear genetic studies have shown that genetic estimates differ between species [16,20,68]. To date, P. inexpectata dis-
plays the lowest mitochondrial and nuclear genetic diversity reported within the Phelsuma genus [16,20,68]. Indeed, only
nine mitochondrial haplotypes (cytb and 12S combined, 1,190 bp) were found for the Critically Endangered P. inexpectata
(N=448 geckos, 18 sites sampled, endemic to Reunion Island) compared to a total of 25 mitochondrial haplotypes (CO/,
314 bp) for the Least Concern Phelsuma andamanensis [69] (N=123 geckos, 10 islands sampled, endemic to Andaman
archipelago) [68], 25 mitochondrial haplotypes (cytb and 16S combined, 777 bp) for the Endangered Phelsuma guim-
beaui [70] (N=80 geckos, 13 subpopulations sampled, endemic to Mauritius) [16], and 47 mitochondrial haplotypes (cytb
and 76S combined, 1,267 bp) for the Endangered Phelsuma borbonica [71] (N=235 geckos, 19 sites sampled, native to
Reunion Island) [20]. Similarly, N, values from nuclear markers reached a maximum of 2.8 alleles per locus per site for P.
inexpectata (20 microsatellite markers, N=452 geckos, 18 sites) compared to a maximum of 15.5 alleles per loci per site
for P. guimbeaui (20 microsatellite markers, N=260 geckos, 10 subpopulations) [16]. Both H and H, were also remark-
ably low, with a maximum value per site of 0.353 and 0.345, respectively, for P. inexpectata (20 microsatellite markers,

N =452 geckos, 18 sites), compared to 0.876 and 0.891, respectively, for P. guimbeaui (20 microsatellite markers, N=260
geckos, 10 subpopulations) [16]. For P. andamanensis, average N,, H , and H, values of 23.7, 0.79, and 0.92 were
reported, respectively (13 microsatellite markers, N=140 geckos, 6 islands) [68]. For P. borbonica, the values of H_ per
site varied from 0.14 to 0.54 (13 microsatellite markers, N=235 geckos, 19 sites) [20]. Such differences in genetic diver-
sity may be partly explained by the considerable variation in the species’ respective areas of occupancy. Indeed, P. inex-
pectata, exhibiting the lowest genetic diversity reported so far among the Phelsuma genus, occupies a highly restricted
area of occupancy of 16 km?, which is 10-16 times smaller than that of other species (estimated areas of occupancy of
156 km? and 250 km? for P. guimbeaui and P. borbonica, respectively) [21,70,71]. Similar low levels of mitochondrial and/
or nuclear genetic diversity found here for P. inexpectata have also been documented for other threatened reptile species,
e.g., Cyclura cychlura inornata, Gallotia bravoana, Gavialis gangeticus, and Phyllodactylus sentosus [14,72—74]. Hence,
the genetic diversity harbored by P. inexpectata is consistent with the low genetic diversity detected in threatened taxa
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[75-77]. Such low genetic diversity in P. inexpectata could make the species particularly vulnerable to stochastic changes
in its environment, in addition to the loss and fragmentation of its habitat.

Nuclear and mitochondrial genetic diversity in natural and anthropizes sites

Despite the overall low genetic diversity observed for P. inexpectata across all sampled sites, both H and H, indices
indicate a slightly higher nuclear genetic diversity at natural sites compared to anthropized ones. In addition, mitochondrial
genetic diversity at natural sites is remarkable since 56% of the haplotypes were only detected in these sites. Compared
to anthropized sites, the natural sites probably harbored more ancient gecko populations, which could be considered as
relict populations with the associated original genetic diversity. While these sites were likely part of a more or less contin-
uous natural habitat prior to human arrival on the island, this habitat is now highly fragmented, and the sites are isolated
from one another. The available data from medium-term monitoring on sites S6 and S7 indicate clearly that the gecko
populations at these sites are declining rapidly over the past decade and that no migration was observed at such fine spa-
tial scale [21,22]. In anthropized sites, genetic diversity was also low and the detection of bottleneck signatures (sites S1,
S2, and S15, based on the reptile mutation rate) might reflect either recent introductions or true bottlenecks. Nevertheless,
in the absence of knowledge about the historical distribution of P. inexpectata, it is not possible to reach clear conclusions.
However, available historical aerial photographs and illustrations could provide important information on the establish-
ment and maintenance of some gecko populations. An interesting case is the anthropized site S9, where historical aerial
photographs and illustrations show that in the recent past (based on IGN [78] and Indian Ocean historic image library
websites [79]), the habitat was clearly unfavorable for the maintenance of a gecko population, as the site consisted mainly
of sugar cane plantations. Therefore, the current establishment and maintenance of a gecko population was possible due
to the modification of the habitat provided by private gardens and by planting favorable vegetation, such as screwpine (P.
utilis), which largely serves as a windbreak along the coastline [80]. In addition, at site S9, the low mitochondrial haplo-
type diversity (N=3) detected, despite the high number of examined specimens (N=70 geckos), supports the conclusion
that the current gecko population results from recent colonization events. Hence, studies based on historical data could
provide information on the current distribution of P. inexpectata, giving insights into colonization events and the evolution
of habitats. Importantly, the presence of P. inexpectata in anthropized sites shows the adaptability of the species to human
development given the availability of favorable conditions through adapted vegetation [23].

Fine-scale genetic differentiation of Phelsuma inexpectata populations and global genetic structure

Within its limited range, P. inexpectata exhibits a fine-scale geographical genetic differentiation, with a global genetic struc-
ture that aligns with the geographical distribution of sites. Indeed, the genetic structure reveals distinct clusters globally
arranged along an east-west gradient, as well as the IBD patterns detected. The overall genetic structure (for K=3) may
reflect a historically more or less continuous distribution, where natural physical barriers such as ravines, could have lim-
ited gecko dispersal. More recently, anthropogenic barriers such as unsuitable agricultural landscapes may have disrupted
gene flow, thereby increasing the isolation of certain sites. The limited dispersal capacity reported for P. inexpectata, with
a maximum dispersal distance of 100 m [24], may also contribute to the observed genetic structure and particularly the
IBD patterns. Lastly, another hypothesis to explain this fine-scale genetic differentiation is the laying site fidelity of females
reported for some gecko populations [28]. Based on the nuclear data, the Bayesian STRUCTURE analyses also showed
the presence of genetic subclusters (for K=12). This genetic substructure and differentiation could also be explained by
the factors mentioned above and notably the low migration rates of geckos between sites supported by the identification
of only 12 geckos (2.7% of the sampled geckos) as first-generation migrants in our analyses. Interestingly, the presence
of geckos belonging to unexpected genetic clusters in some parts of the geographical distribution (examples: site S1 at
the extreme west and sites S15 and S16 in the eastern part of the study area; see Fig 1D for K=3) highlights again the
impact of anthropogenic activities on the shaping of P. inexpectata genetic structure. Indeed, these unexpected genetic
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clusters probably result from introductions of geckos to new areas by active or passive transport of individuals (adults,
juveniles or eggs) via vehicles and/or plants as reported for P. inexpectata but also other Phelsuma species on the island
[24,29,81]. This is very likely the case at site S1 where geckos were presumably recently introduced, and it is probably the
case of several other anthropized sites. In summary, in the light of our results, the current distribution and structuring of
the genetic diversity of P. inexpectata likely result from different non-exclusive processes, such as historical geographical
distribution, limited dispersal of geckos, anthropogenic activities (with fragmentation and isolation of natural populations),
and the colonization of novel areas (often urban) through intentional or unintentional transportation of geckos over time.

Conclusions

The present study constitutes the first overview of the genetic diversity and population structure of the Critically Endan-
gered P. inexpectata on Reunion Island. The main findings allow us to provide recommendations for the conservation of
the species. Firstly, the detected fine-scale population structuring coupled with the low dispersal capacity of P. inexpectata
call for attention to the potential local gecko population extinctions in the context of habitat fragmentation and loss. Con-
sidering that the geographic distances between most sites exceed the species’ dispersal capacity, and given the potential
risk of invasion by non-native gecko species [23] the establishment of corridors at such spatial scales is unlikely to repre-
sent an immediate conservation priority, although this may warrant reconsideration under changing future conditions and
a site-by-site examination. On the other hand, priority should be given to preventing further loss of suitable habitats for the
gecko and, whenever possible, to restoring degraded sites such as the habitat restoration actions ongoing at sites S6 and
S7. Secondly, the relatively low genetic diversity of P. inexpectata could limit its evolutionary potential and make the spe-
cies vulnerable to stochastic changes in its environment. Therefore, it is important to conserve the current genetic diversity
notably by conserving gecko populations from natural sites harboring original and remarkable genetic diversity (e.g., sites
S3, S8 or S12). Although remaining particularly vulnerable to intense and multiple anthropogenic pressures, anthropized
sites should also be integrated in conservation programs as they can maintain gecko populations and harbor a specific
genetic diversity (e.g., sites S9, S10 or S15). Finally, we stress the importance of carrying out more studies to clearly iden-
tify the ecological factors (e.g., demography, behavior, presence of invasive species etc.) underlying the decline of the P,
inexpectata populations. Pending a better understanding of the mechanisms at play at each site and the implementation
of targeted management actions, ex situ actions such as breeding program [39] should be considered.

Supporting information

$1 Fig. UPGMA tree of 18 sites of Phelsuma inexpectata. Genetic distance was calculated by using pairwise F . mea-
sures of genetic distance.
(TIF)

$2 Fig. Isolation by distance (IBD) (genetic distance F, / (1-F,) vs spatial distance between sites in km) of Phel-
suma inexpectata genotyped at 20 microsatellite markers. (A) IBD at eight natural sites (N. . =201) and (B) nine
anthropized sites (N, ,=240) in the south of Reunion Island.

(TIF)
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S3 Fig. Graphs of (A) AK and (B) LnP(K) for K=1-20. The results were generated from Bayesian analyses with
STRUCTURE based on 452 Phelsuma inexpectata genotyped at 20 microsatellite markers.
(TIF)

S1 Table. Number of Phelsuma inexpectata specimens sampled at 18 sites (S1 to S18) by to sex (females, males,
and undetermined: sex under.). For each site, the type of habitat is provided, A: anthropized; N: natural.
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S2 Table. Characteristics of the 20 microsatellite loci used for the 452 Phelsuma inexpectata sampled at 18 sites
on Reunion Island. Na,, total number of alleles detected; H, the observed heterozygosity (mean over sites), H_ the
expected heterozygosity; Null allele detected detection of null allele and the associated sites. All loci were in Hardy—Wein-
berg equilibrium after Benjamini and Yekutieli corrections.
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83 Table. First-generation migrants based on 20 microsatellite markers. The identification number and the sex of
specimens are provided. The probability thresholds, the sampled site, putative origin site, and the distance between sam-
pled and putative origin sites are also provided.
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S4 Table. One-tailed Wilcoxon signed-rank test results obtained from BOTTLENECK software under the Two-
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